Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014 nature (birds and wind) while the second group listened to theta binaural sound waves. Both groups listened to the stimulus through headphones. During the experiment, participants were monitored with the Neurosky Mindwave Interface, which was connected through Processing to a Max Patch that saved all the data in a ‘.csv’ file. Before the stimulus, a baseline EEG took place and the participants answered the “Trait” part of the STAI test and a pre-experiment “State” version of the test. After the experiment, participants answered a post-experiment “State” STAI and a post-experiment EEG also took place. Each experiment was developed with one participant at a time in a controlled environment. American Psychological Association Ethical Principles and Code of Conduct 2002 were followed. 6. MATERIALS • Herman Miller chair • Neurosky Mindwave Interface • Maximum Voltage – 1mV • Maximum radiofrequency Range (Bluetooth) 10m • Maximum transference rate through RF – 250kb/s • Sample rate – 512Hz • Battery cycle – 6-8h • MacBook Pro 7. SOFTWARE • Processing 1.5.1 • Microsoft Excel • Max 6 • Braintocsv V1.5: Application developed in Max 6 by Santiago Rentería, which collates data gathered from the Mindwave interface into a ‘.csv’ file. 8. DOCUMENTS • STAI questionnaire (Annex 2) • STAI “Trait”: Measures anxiety as a temporal state. • STAI “State”: Measures anxiety based on how people feel on a daily basis. • Consent Letter (Annex 3) 9. CONTROL ENVIRONMENT Recording Studio Control Room located at Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Santa Fe. Fixed temperature at 22ºC and acoustically isolated. 10. STIMULI • Experimental group – Binaural Theta frequencies • Control group – Nature environmental sounds 11. PROCEDURE • The participant is asked to read and sign a consent letter. • A pre-experimental three-minute encephalogram is taken and the participant is required to answer State and Trait STAI tests. • The corresponding stimulus is played during ten minutes and an EEG is taken. • The State STAI test is answered and a post-experiment EEG is taken. 12. VISUAL DATA ANALYSIS The stimuli took place from second 180 to second 774. (Graphs in Annex 1) 12.1 Theta The significant time range was from second 3 to second 948. The most significant moments were the following: (see annex A1.5) s = 189; p = 0.014; t = 1.025 s = 495; p = 0.002; t = -1.923 s = 780; p = 0.001; t = -2.349 12.2 Meditation The significant time range was from second 240 to second 912. The most significant moments were the following: (see annex A1.3) s = 240; p = 0.042; t = .0.685 s = 522; p = 0.013; t = 0.546 s = 702; p = 0.016; t = 0.897 12.3 Delta The significant time range was from second 12 to second 954. The most significant moments were the following: (see annex A1.10) s = 177; p = 0.046; t = 1.696 s = 627; p = 0.016; t = -1.366 s = 912; p = 0.007; t = 1.758 12.4 Attention The significant time range was from second 243 to second 870. The most significant moments were the following: (see annex A1.11) s = 243; p = 0.021; t = 0.672 s = 513; p = 0.005; t = 0.722 s = 753; p = 0.017; t = 0.383 12.5 STAI Variations were found in STAI-State pre-experiment and post-experiment: • Control group results rose from 19 to 21 • Experimental group results decreased from 20 to 15. Variations between both groups were found in the STAI –Trait: • Experimental group with a score of 32 in STAI-T test outran control group by 4 points 13. RESULT ANALYSIS Samples were analyzed every three seconds. They were later statistically distributed according to the T-student test in order to find differences between both groups. For this experiment, the significant p value was p<0.05, this means that the probability is less than 5% T-student detailed analysis: • The meditation value is similar in both groups, (see graph A1.3). T-student function shows less significant points for this parameter. This means both stimuli induced relaxation to the participants. • Theta values are higher in the control group, especially after second 510 (see graph A1.5) almost at the middle of the stimulus. • STAI “State” post-experiment results from the experimental group are higher than the control. Therefore, theta binaural frequencies were more effective as an anxiolytic stimulus. (see graphs A1.1 and A1.2) • Delta values are higher after second 285 in the control group (see graph A1.10). This indicates deep sleep and losing of consciousness over the body (unconscious relaxation). It is highly possible that the participant fell asleep or got to the first stages of sleep. • There is a significant difference in delta between experimental and control groups after second 870 (post-stimulus). For the

So using the example track above, the right ear is sent a 20Hz beat, compared to a 10Hz beat in the left ear.  As the right ear receives the higher frequency of beat, this works to increase the speed of the ‘left' brain hemisphere, which can be helpful for people with conditions like ADD, who are often found to have an abundance of slow wave activity in the left brain.

Cvetkovic D, Simpson D, Cosic I (2006). “Influence of sinusoidally modulated visual stimuli at extremely low frequency range on the human EEG activity“. Conference proceedings : … Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 1: 1311 – 4. doi:10.1109
An invigorating, brain-sharpening session, this audio starts at 14Hz, a beta feel-good frequency and SR harmonic. It then steps up in six-minute harmonic increments, gradually up to gamma 39Hz, leaving you feeling mentally stimulated and full of energy. A binaural beat track supports the main frequencies for those wearing headphones. Uplifting background music with embedded amplitude modulation provides a further layer of entrainment. Excellent for use as a morning alarm clock, ahead of a big night out, or to inspire those tired trips to the gym.